에너지연, 스마트윈도우 반응원리 세계 최초 규명

스스로 색이 변하는 스마트윈도우, 반응원리 규명으로 성능과 내구성 향상 기대
광감응 자동 색변환 스마트윈도우 반응 메커니즘 규명

한국에너지기술연구원 연구진이 스마트윈도우에 적용한 필름. 사진제공=한국에너지기술연구원

기후위기에 따른 홍수, 가뭄, 해수면 상승 등 기상이변과 생태계의 변화가 나타나며 탄소중립의 중요성이 범세계적 관심사로 부상하고 있는 가운데 국내 연구진이 탄소중립 실현에 부응하는 제로에너지건물 실현을 위한 스마트 윈도우 성능과 내구성을 향상시킬 수 있는 반응원리를 세계 최초로 규명하는데 성공했다.


스마트 윈도우란 외부에서 유입되는 빛의 투과도를 자유롭게 조절해 에너지 손실을 줄이고 소비자에게는 쾌적한 환경을 제공할 수 있는 제어 기술을 말하며 수송, 정보 디스플레이, 건축 등 다양한 산업 분야에 공통적으로 적용될 수 있는 기반 기술이다.


한국에너지기술연구원은 고려대학교 IBS 분자 분광학 및 동력학 연구단과 군산대학교와 공동으로 실제 구동중인 전체 소자에서 발생하는 현상을 분석하는 방법인 Operando Raman 분석법을 통해 광감응 자동 색변환 스마트 윈도우 디바이스 내에서 이온의 이동과정과 그에 따른 변색층의 상변화에 대한 반응 원리를 규명했다고 18일 밝혔다. 연구진이 개발한 광감응 자동 색변환 스마트 윈도우 기술은 태양전지 기술과 전기변색 기술을 융합한 기술이다. 소자 내에 광흡수층을 포함하고 있어 별도의 전원공급 필요성과 가격문제를 동시에 해결하고 건축물의 에너지 절감이 가능한 차세대 스마트 윈도우 기술이다.


광감응 자동 색변환 스마트 윈도우 장치내 변색 물질에서의 리튬 이온의 삽입과 탈착과정은 스마트 윈도우의 작동 속도와 효율성을 결정하는 핵심 단계이지만 정확하게 어떤 원리를 통해 반응하는지는 지금까지 밝혀지지 않았다.


연구를 주도한 태양광연구단 홍성준 박사 연구진은 착색과 탈색 과정 중 변화를 실시간으로 관찰해 변색에 중요한 역할을 하는 텅스텐산화물의 특정 자리로 리튬 이온이 이동하는 원리를 밝혀냈다.


스마트윈도우의 대표적인 기술인 전기변색소자의 경우 변색에 중요한 역할을 하는 물질은 텅스텐산화물이 대표적이다. 텅스텐산화물은 텅스텐 원자를 중심으로 팔면체의 꼭지점이 산소원자로 구성된 단위체가 팔면체의 꼭지점을 공유해 육방정계 결정구조를 형성한다. 창호가 투명한 상태에서 텅스텐산화물의 빈공간 사이사이로 환원 전압을 통해 리튬 이온이 물질에 주입돼 짙은 청색으로 변색(착색 과정)되며 이를 산화 전압으로 리튬 이온을 다시 추출함으로써 투명한 상태로 돌아온다.


육방정계 텅스텐산화물은 다양한 빈공간이 존재하고 그 위치에 따라 리튬이온의 결합에너지가 달라지며 이로 인해 출입 가역성이 다른 특징이 있다. 일반적으로 결합에너지가 작은 위치는 가역성이 우수하고 리튬 이온의 출입이 원활하게 이루어져 장치의 내구성이 우수한 특성을 보인다. 즉 리튬 이온이 특정 빈공간 위치에 들어가 착색을 유도하고 반대로 벗어나 탈색을 만들어내는 일련의 과정이 원활하게 이뤄진다. 하지만 텅스텐산화물의 모든 빈공간이 반드시 가역성이 우수하지 않은 문제점이 있다.


전기변색소자의 경우 리튬이온이 텅스텐산화물의 특정 빈공간 위치에 출입하도록 결정하는 것은 인가하는 전압의 크기에 좌우된다. 그리고 리튬 이온은 인가된 전압 크기에 따라 특정 빈공간 위치에 순차적으로 출입하면서 텅스텐산화물의 색이 투명한 상태에서 푸른색으로 변화하게 된다. 그러나 특정 빈공간 위치에 출입하는 리튬이온의 양과 색변화 정도는 빈공간의 위치에 따라 비례적인 것과 비례적이지 않은 곳이 존재하며 일반적으로 비례적인 특성을 보이는 빈공간 위치가 리튬이온의 출입 가역성이 우수한 것으로 알려져 있다.


연구진이 개발한 광감응 자동 색변환 스마트윈도우는 외부 전압이 아닌 내부에 포함된 광감응 층에 의해 생성된 전력이 텅스텐산화물의 변색을 유도한다. 연구진은 여기에서 Operando Raman 분석법을 통해 내부전력 범위안에서 텅스텐산화물의 어떤 빈공간 위치에 리튬 이온이 출입하며 각각의 빈공간에 대한 가역성 정도를 규명했다.


연구를 통해 광감응 자동 색변환 스마트윈도우에 사용된 육방정계 텅스텐산화물의 경우 90% 이상의 우수한 가역성을 보이는 것으로 확인했다. 이번 연구를 바탕으로 연구진은 향후 텅스텐 산화물의 형상 및 입자 크기 조절 그리고 첨가제 도입 등의 방법을 통해 가역성을 100%까지 향상시켜 스마트윈도우의 성능 및 내구성을 확보할 수 있을 것으로 기대하고 있다.


에너지연 태양광연구단 홍성준 박사는 “이번 연구 결과는 고성능 스마트 윈도우 개발을 위한 분자 설계 원리를 제공할 뿐만 아니라 개발된 operando 분광학 방법을 적용해 OLED, 태양전지 등의 광전소자내 핵심 분자의 거동을 작동 환경에서 관찰하여 성능 향상에 핵심적인 요인을 밝혀낼 수 있을 것으로 기대한다”고 밝혔다.


스마트윈도우의 성능과 내구성을 향상시켜줄 이 연구결과는 재료과학분야 저명 국제 학술지인 ‘나노 에너지’에 온라인 게재됐다.


/대전=박희윤 기자 hypark@sedaily.com

<저작권자 ⓒ 서울경제, 무단 전재 및 재배포 금지>