미국의 인텔 공장 안에 설치된 하이(High)-NA EUV 장비. 2027년 양산할 1.4나노(14A) 공정에서 이 장비를 본격 도입하는 것을 목표로 하고 있습니다. 사진제공=인텔
2월 세계 최대 광학회 ‘SPIE 2024’에서 앤 켈러허 인텔 수석 부사장이 발표했던 차세대 EUV에 관한 슬라이드를 그대로 각색한 내용입니다. 자료출처=인텔
범용으로 쓰이고 있는 불화아르곤(ArF)보다 에너지가 14배 센 EUV는 동일 에너지 대비 광자의 수가 상당히 부족하다는 단점이 있죠. 하이-NA EUV로 광자의 수가 늘어난다고 해도 ‘샷 노이즈’ 문제로 거친 회로를 찍을 확률이 높아지는 점을 간과할 수 없습니다. 사진출처=TEL
로우-NA EUV와 DSA 프로세스. 사진제공=ASML, 구글
반도체 업계에서 쓰이는 6x6인치 정사각형 포토마스크. 사진제공=인텔 유튜브
0.33→0.55NA로 EUV 렌즈의 크기를 늘려서 EUV 빔의 사이즈를 키운 것은 좋지만 회로를 머금는 마스크 부분에서 입사 빔과 반사 빔이 겹쳐버리면서 불량 회로가 생긴다는 단점이 생깁니다.
그래서 빔을 찌그러뜨려서 마스크로 빛을 전달하는데, 빔을 찌그러뜨린 만큼 마스크 속 회로도 쭉 늘립니다. 같은 면적의 마스크 안에서 회로만 늘어난 거라, 두번에 나눠 찍은 뒤 합치는(stitching) 노광 기술이 적용됩니다.
하이-NA 시대에서 빔 겹침 현상을 해결하기 위해 마스크의 크기를 가로-세로 2배씩 키우는 방법도 고안됐습니다. 다만 노광 생태계의 너무 큰 지각변동이 일어날 수 있음을 고려해야 했습니다. 자료=SPIE
두 번에 걸친 High-NA 노광 작업 후 이어 붙이는(stitching) 작업의 애로사항을 해결하기 위해, 한번에 회로를 찍어내기 위한 포토마스크 ‘대혁신’을 모색하는 인텔. 사진출처=구글
ASML의 EUV 노광기 로드맵. 자료출처=ASML