국내 연구진이 역전기투석-역삼투 기술의 융합을 통해 친환경적인 담수와 전기 생산이 가능한 핵심기술을 개발했다. 여기서 더 나아가 공정의 핵심 소재인 분리막은 기존 세계 최고수준 대비 2배 이상 향상시켜 글로벌 기술 선도 기반도 마련했다.
한국에너지기술연구원은 해양융복합연구팀 정남조 박사 연구진이 에너지소모량을 최소화하기 위해 역삼투 모듈의 앞뒤에 역전기투석 발전기를 연계시키는 융합 공정(역전기투석-역삼투-역전기투석)을 개발했다고 21일 밝혔다.
이를 통해 1일 100톤 담수생산 실증을 성공적으로 마쳤고 기존 역삼투 단일 공정 대비 에너지 소모량을 30% 이상 절감시켰다.
지속가능한 미래를 위해 물 부족문제를 해결할 수 있는 대안은 해수담수화 기술이 가장 유망하다. 하지만 해수담수화 시장의 78%를 차지하는 역삼투 기술은 담수 생산을 위한 에너지소모량이 많고 공정 이후 배출되는 농축해수가 다시 해안에 방류됨으로써 해수의 염 농도 상승으로 해양 생태계 오염의 원인이 되고 있다.
최적화된 역삼투 공정은 1톤의 담수 생산에 약 3.5kWh의 전기에너지가 소모된다. 이는 담수 생산단가의 약 30%를 차지하며 톤당 1.6kg의 이산화탄소를 발생시키는 것과 같다. 한편 2019년 기준 전 세계 1만6000개의 해수담수화 플랜트에서 쏟아내는 농축해수의 양은 하루 1억4000만이며 세계 담수화 시장 점유율 50% 이상인 중동지역의 해양 오염은 심각하다.
이에 연구진은 에너지소모량 절감과 농축해수의 친환경 처리라는 해수담수화의 두 가지 기술적 현안을 동시에 해결할 수 있는 1일 100톤 역전기투석 염분차발전-역삼투 해수담수화 융합 공정을 세계 최초로 단일 플랜트로 실증하는데 성공했다.
전단에 놓인 역전기투석 발전기는 해수를 이용해 에너지를 생산하면서 해수의 농도를 20% 이상 낮춘 후 역삼투 공정에 공급할 수 있고 이때 역삼투에 필요한 에너지소모량은 낮아진 농도만큼 줄어든다.
이어지는 역삼투 공정을 통해 담수와 함께 배출된 농축해수는 고 밀도의 에너지원으로 저장되고 후단에 설치된 역전기투석 발전기를 이용해 필요할 때 전기로 전환되며 최종 배출되는 농축해수의 농도는 해수 수준으로 배출시키는 것을 확인했다.
연구진은 이 외에도 역전기투석-역삼투-역전기투석 융합 공정의 핵심 소재인 역전기투석용 패턴형 이온교환막과 역삼투용 삼투막을 자체 개발했다.
역전기투석 공정에 적용된 패턴형 이온교환분리막은 세계 선도기관(일본, 후지필름)의 기술과 비교해 두께는 10분의 1, 성능은 2배, 내오염성은 3배 이상 향상된 결과를 확인했고 실용화 수준의 적층 기술을 확보했다. 역삼투용으로 개발된 신규 유입수 조건의 삼투막은 유입수의 농도가 2.3~2.8wt.% 조건에서 99.8% 이상의 염제거율을 보였으며, 8인치 모듈화에 성공했다.
연구진은 경제성 분석으로 공정의 대용량화와 최적화 달성을 통해 담수 생산단가는 10% 이상 절감, 염분차발전 균등화발전비용 단가는 kWh당 130원 이하도 가능함을 확인했다.
또한 개발한 염분차발전 기술은 해수온도, 해양생태계에 악영향을 미치는 발전소(원자력, 화력)의 온배수를 이용해 대용량 발전소 구축에도 사용할 수 있어 국내 기저부하와 재생에너지 간 에너지믹스 체계 유연성 확보에 핵심적인 역할도 기대한다.
해수담수화 기술 관련 글로벌 시장은 매년 15% 이상의 성장세로 2025년에는 38조원 규모로 예상된다.
연구책임자인 정남조 박사는 “염분차-해수담수화 융합 기술은 기존 해수담수화의 기술적 이슈인 에너지소모량 저감 및 농축해수 친환경 처리가 가능하고, 해수 이용 장주기 에너지저장과 대용량 발전이 가능한 미래에너지기술의 핵심”이라며 “중동, 동남아시아, 유럽 등 세계적으로 관심 높은 물-에너지 융합 기술로 대용량 실증의 조기 완료와 정부의 지속적 지원을 통해 글로벌 기술 선도가 가능할 것”이라고 말했다.
연구진은 향후 저탄소 선도형 해수담수화 산업의 국내 기술경쟁력 강화와 대용량화를 통한 해외 진출을 위해 1일 2000톤 이상급 대용량 파일럿 플랜트 개발에 나설 계획이다.