사회 전국

KAIST, 고정확도 실시간 학습 가능한 모바일 인공지능 반도체 칩 세계 최초 개발

전기및전자공학과 유회준 교수 연구팀, 자율 주행, 로봇 등 다양한 곳에 활용 가능

KAIST 전기및전자공학부 유회준 교수KAIST 전기및전자공학부 유회준 교수




KAIST는 전기및전자공학부 유회준 교수 연구팀이 인공지능의 실시간 학습을 모바일 기기에서 구현하는 고정확도 인공지능(AI·Artificial Intelligent) 반도체를 세계 최초로 개발했다고 23일 밝혔다.



인공지능 반도체란 인식·추론·학습·판단 등 인공지능 처리 기능을 탑재하고, 초지능·초저전력·초신뢰 기반의 최적화된 기술로 구현한 반도체를 말한다.

연구팀이 개발한 인공지능 반도체는 저비트 학습과 저지연 학습 방식을 적용해, 모바일 기기에서도 학습할 수 있다. 특히 이번 반도체 칩은 인공지능의 예상치 못한 성능 저하를 막을 수 있는 실시간 학습 기술을 성공적으로 구현했다.

KAIST 전기및전자공학부 한동현 박사과정이 제1 저자로 참여한 이번 연구는 지난 6월 12일부터 15일까지 인천 연수구 송도 컨벤시아에서 개최된 국제 인공지능 회로 및 시스템 학술대회(AICAS)에서 발표됐고 응용 예시를 현장에서 시연했다. 최우수 논문상과 최우수 데모상을 모두 석권해 그 우수성을 널리 알렸다.



인공지능 (AI) 반도체 기술을 망라하는 국제 학술 대회 ‘AICAS 2022’는 인공지능 반도체 분야 세계 최고 권위를 가진 IEEE(미국 전기 전자 기술자 협회)학회로 평가받으며 삼성, SK를 필두로, 한국전자통신연구원(ETRI), 엔비디아(NVIDIA), 케이던스(Cadence) 등 국내외 저명한 기업과 기관 등이 참석해 인공지능 반도체 회로와 시스템 전 분야, 인공지능 반도체와 관련된 연구성과를 공유하는 행사다.

관련기사



기존 인공지능은 사전에 학습된 지능만으로 추론을 진행했기 때문에 학습하지 않은 새로운 환경 혹은 물체에 대해서는 물체 검출이 어려웠다. 하지만 유회준 교수 연구팀이 개발한 실시간 학습은 추론만 수행하던 기존 모바일 인공지능 반도체에 학습 기능을 부여함으로써, 인공지능의 지능 수준을 크게 끌어올렸다.

유 교수팀의 새로운 인공지능 반도체는 사전에 학습한 지식과 애플리케이션 수행 중에 학습한 지식을 함께 활용해 고정확도 물체검출 성능을 보였다. 특히 유회준 교수 연구팀은 렌즈가 깨지거나 기계 오류로 인한 인공지능의 예상치 못한 정확도 감소도 자동으로 인지하고 이를 실시간 학습을 통해 보정, 기존 인공지능의 문제점을 해결했다.

유 교수팀은 실시간 학습 기능에 더해, 모바일 기기에서 저전력으로 학습이 가능할 수 있도록, 저비트 인공지능 학습 방법, 직접 오류 전사 기반 저지연 학습 방식을 제안, 이를 최적화할 수 있는 반도체(HNPU)와 응용 시스템을 모두 개발했다.

HNPU는 다른 모바일 물체검출 시스템과 비교해 75% 높은 속도, 44% 낮은 에너지 소모를 달성하면서도 실시간 학습으로 고정확도 물체검출을 개발해 주목을 받았다.

연구팀은 HNPU의 활용 예시로 카메라 렌즈가 깨지거나 기계 오류, 조명, 밝기 변화로 인공지능의 추론 능력이 떨어졌을 때 실시간 학습을 통해 다시 정확도를 높이는 고정확도 물체검출 시스템을 개발했다. 이는 이후 자율 주행, 로봇 등 다양한 곳에 활용될 것으로 기대된다.

특히 연구팀의 HNPU 연구는 2022 국제인공지능회로및시스템학술대회(AICAS 2022)에서 발표돼, 최우수 논문상과 최우수 데모상을 모두 석권하여 그 우수성을 널리 알렸다.

연구를 주도한 KAIST 전기및전자공학부 유회준 교수는 “현재 인공지능은 사전에 학습한 지식만으로 주어진 문제를 해결하고 있고 이는 변화하는 환경과 상황에 맞춰 계속 학습하는 인간의 지능과 뚜렷한 차이를 보인다”며 “이번 연구는 실시간 학습 인공지능 반도체를 통해 인공지능의 지능 수준을 사람 수준으로 한층 더 끌어올리는 연구”라고 연구의의를 밝혔다.


대전=박희윤 기자
<저작권자 ⓒ 서울경제, 무단 전재 및 재배포 금지>




더보기
더보기





top버튼
팝업창 닫기
글자크기 설정
팝업창 닫기
공유하기